二叉平衡树(Balanced Binary Tree 或 Height-Balanced Tree)(AVL)
定义:它是一棵空树,或者是具有下列性质的二叉树:
它的左子树和右子树都是平衡二叉树,且左子树和右子树的深度之差的绝对值不超过1.
二叉树上的节点的平衡因子BF(Balance Factor)定义为该结点的左子树的深度减去它的右子树的深度,则平衡二叉树上所有结点的平衡因子只可能是-1、0和1。
AVL树的实现:
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 
 | #include <stdio.h>#include <stdlib.h>
 
 #define LH +1
 #define EH 0
 #define RH -1
 typedef struct BSTNode{
 int data;
 int bf;
 struct BSTNode *lchild, *rchild;
 }BSTNode, *BSTree;
 void R_Rotate(BSTree &p)
 {
 BSTree lc;
 lc = p->lchild;
 p->lchild = lc->rchild;
 lc->rchild = p; p = lc;
 }
 void L_Rotate(BSTree &p)
 {
 BSTree rc;
 rc = p->rchild;
 p->rchild = rc->lchild;
 rc->lchild = p; p = rc;
 }
 void LeftBalance(BSTree &T)
 {
 BSTree lc, rd;
 lc = T->lchild;
 switch (lc->bf)
 {
 case LH:T->bf = lc->bf = EH;
 R_Rotate(T);
 break;
 case RH:rd = lc->rchild;
 switch (rd->bf)
 {
 case LH:T->bf = RH; lc->bf = EH;
 break;
 case EH:T->bf = lc->bf = EH;
 break;
 case RH:T->bf = EH; lc->bf = RH;
 break;
 }
 rd->bf = EH;
 L_Rotate(T->lchild);
 R_Rotate(T);
 }
 }
 void RightBalance(BSTree &T)
 {
 BSTree lc, rd;
 lc = T->rchild;
 switch (lc->bf)
 {
 case RH:T->bf = lc->bf = EH;
 L_Rotate(T);
 break;
 case LH:rd = lc->lchild;
 switch (rd->bf)
 {
 case RH:T->bf = LH; lc->bf = EH;
 break;
 case LH:T->bf = EH; lc->bf = RH;
 break;
 case EH:T->bf = lc->bf = EH;
 break;
 }
 rd->bf = EH;
 R_Rotate(T->rchild);
 L_Rotate(T);
 }
 }
 int InsertAVL(BSTree &T, int key, bool &taller)
 {
 
 if (T == NULL)
 {
 T = (BSTree)malloc(sizeof(BSTNode));
 T->data = key; T->bf = EH;
 T->lchild = T->rchild = NULL;
 taller = 1;
 }
 else
 {
 if (key == T->data)
 {
 taller = 0;
 return 0;
 }
 if (key<T->data)
 {
 if (!InsertAVL(T->lchild, key, taller))
 return 0;
 if (taller)
 {
 switch (T->bf)
 {
 case LH:LeftBalance(T);
 taller = 0; break;
 case EH:T->bf = LH; taller = 1;
 break;
 case RH:T->bf = EH; taller = 0;
 break;
 }
 }
 }
 else
 {
 if (!InsertAVL(T->rchild, key, taller))
 return 0;
 if (taller)
 {
 switch (T->bf)
 {
 case LH:T->bf = EH; taller = 0;
 break;
 case EH:T->bf = RH; taller = 1;
 break;
 case RH:RightBalance(T); taller = 0;
 break;
 }
 }
 }
 }
 return 1;
 }
 
 void createAVL(BSTree &T){
 int a[10] = { 4, 7, 2, 1, 5, 9, 8, 0, 3, 6 };
 bool taller = false;
 T = NULL;
 for (int i = 0; i < 10; i++){
 InsertAVL(T, a[i],taller);
 }
 }
 
 void InOrderAVL(BSTree T){
 if (T){
 InOrderAVL(T->lchild);
 printf("%d ", T->data);
 InOrderAVL(T->rchild);
 }
 }
 
 int main(){
 BSTree T;
 createAVL(T);
 InOrderAVL(T);
 return 0;
 }
 
 |